

First-principles Modeling and Design of Solid-State Interfaces for the Protection and Use of Lithium Metal Anodes

Principal Investigator: Gerbrand Ceder

Presenter: Howard Qingsong Tu

Department of Materials Science and Engineering,

UC Berkeley, Berkeley, California 94720

Wednesday, June 20

Project ID: bat373

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Start date: April 1, 2017
- End date: February 28, 2020
- Percent complete: 40%

Budget

- Total Funding:
 - DOE share: \$890K
 - Contractor share: \$99K
- Funding for FY 18:
 - DOE share: \$297K
 - Contractor share: \$33K

Barriers

- Barriers addressed
 - Electrochemical Energy Storage
 - ❖ Performance → Beyond Li-ion
 - ❖ Life → Cycling performance
 - ❖ Abuse tolerance → Dendrite prevention

Partners

None at this time

Relevance - Objectives

□ Overall objectives

High-throughput framework to screen materials

- Identify promising solid electrolytes
 - Study interfacial stability of Li-metal/solid electrolytes

Study dendrite-resistant electrolyte

- Understand the underlying science controlling the propagation of dendrites in ionic conductors
- Develop a model and criteria to identify promising solid electrolyte materials that can prevent dendrite propagation.

□ Objectives this period

- Screen material stability for potential material
- Electro-Chemo-Mechanical theory to model dendrite formation and growth in all solid state battery

Relevance - Impact

- Improve lack of understanding of Li deposition and interface dynamics in advanced batteries.
- Li metal anodes with solid electrolytes greatly increases energy density and safety of current batteries.
- Improve understanding of complex evolution of Li-metal / solid electrolyte interfaces during electrochemical cycling
- Determine design principles to develop reliable all solidstate batteries

Milestones

Milestone	Month/Year	Status
Stability screening of electrolyte materials using phase diagram assessment of chemical and electrochemical stability	September 2017	Completed
Development of metal-electrolyte electrochemical- mechanical interface model	January 2018	Completed
Determine critical stress conditions that yield fracture in ceramic electrolytes during Li deposition	March 2018	Completed
Evaluation of bulk elastic properties for candidate materials using first principles and atomistic calculations.	June 2018	Ongoing
Li conductivity screening using ab initio molecular dynamics and nudged elastic band method to screen for materials with high Li-mobility.	September 2018	Ongoing

Approach 1 - First Principle Calculation on Chemical Stability and Ionic Conductivity

- DFT calculations with PBE GGA using PAW method.
- Nudged Elastic Band (NEB) calculations for energy barriers for single-vacancy migration.
- Defect charge is compensated by a uniform background charge.

Approach 2 – Continuum Theory on Dendrite Formation and Propagation in SSB

- Mechanism of dendrite nucleation (Model a).
- Mechanism of dendrite growth and crack propagation (Model b).
- Mechanism of dendrite propagation along grain boundary (Model c).

Accomplishments 1 - Electrochemical stability against Li metal

Oxide vs. Nitrides

- High-throughput calculation of voltage stability window of materials in ICSD database.
- ❖ For the same element M in Li-M-X (X=O or N) ternaries, nitrides exhibit better stability against Li-metal than their oxide counterparts.
- This result indicates that more covalent M-N bonding can stabilize M from being reduced by Li metal.

Accomplishments 2 – Stress Distribution and Plasticity of Li metal

☐ Effective Stress Distribution around surface roughness

☐ Stress-Strain Curve

☐ Stress along interface

Stress concentrates at the tip of rough surface, which may lead to crack of a solid conductor or protective coating on lithium

Accomplishments 3 – Inhomogeneous Deposition of Li at Interface

□ Li Deposition

Inhomogeneous deposition on rough surface of solid electrolyte leads to contact loss and dendrite formation.

Gap at Interface

Conclusions

Candidate Solid Electrolytes

- Screened solid electrolytes through large-scale material recognition based on ICSD and materials prediction.
- Used phase diagrams to assess chemical and electrochemical stable solid electrolytes.

Dendrite Formation and Propagation

- Developed a framework to study the stability of interface of solid electrolyte and Li Metal based on first principle calculations.
- Developed continuum method to predict dendrite formation and propagation based on multi-physical coupling method and fracture method.

Responses to Reviewers' Comments

No previous year comments for this project.

Partners and Collaborations

Most Calculations are done using the following national computing resource:

- National Energy Research Scientific Computing Center (NERSC) based at the Lawrence Berkeley National Laboratory;
- Extreme Science and Engineering Discovery Environment (XSEDE);
- Center for Functional Nanomaterials (CFN) at Brookhaven National Laboratory and Argonne National Laboratory

Remaining Challenges and Barriers

Grain boundary in solid conductor

- Diffusion in porous SSE under external pressure
- Segregation in grain boundary under chemical reaction

Fracture Caused by High External Pressure

- Losing contact area at interface leads to crack in SSE
- Incorporate fracture mechanics to describe the propagation of crack and dendrite

Proposed Future Research

- □ Task 1: Conductivity Screening
 - Screening more SE with good ionic conductivity
- ☐ Task 2: Evaluation of bulk elastic properties
 - DFT calculations of elastic properties for candidate materials
- □ Task 3: Critical criteria controlling dendrite propagation
 - Study the diffusion of Li Metal in Grain boundary and porous material
 - Embedding proper fracture model into the Multiphysics model

Summary

Relevance

- Interfacial stability of Li-metal/solid electrolytes.
- Improve lack of understanding of Li deposition and interface dynamics in advanced batteries.
- Design principles to develop reliable all solid-state batteries

Approach

- First Principle Calculation on Chemical Stability
- Nudged Elastic Band (NEB) used for energy barriers calculation
- Continuum Theory on Dendrite
 Formation and Propagation in SSB

Technical accomplishments

- More covalent M-N (M = O or N) bonding could stabilize M from being reduced by Li metal.
- Li metal oxides react with Li to form electron conductive phase, making the interface decomposition non-passivating
- Stress will concentrate at the tip of rough surface, leading to cracking solid conductor.
- Inhomogeneous deposition lead to contact loss and dendrite formation in solid state battery

Proposed future research

- Properties of grain boundary in solid conductor
- Fracture Caused by High External Pressure